Bifurcation Diagram for Saddle/Source Bimodal Linear Dynamical Systems

نویسندگان

  • JOSEP FERRER
  • ANTONI SUSIN
چکیده

We continue the study of the structural stability and the bifurcations of planar bimodal linear dynamical systems (BLDS) (that is, systems consisting of two linear dynamics acting on each side of a straight line, assuming continuity along the separating line). Here, we enlarge the study of the bifurcation diagram of saddle/spiral BLDS to saddle/source BLDS and in particular we study the position of the homoclinic bifurcation with regard to the new improper node bifurcation. Key–Words: Piecewise linear system, structural stability, bifurcation diagram

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddlenode bifurcation, boundary crisis, and interior crisis. The...

متن کامل

Generalized Hénon Map and Bifurcations of Homoclinic Tangencies

Abstract. We study two-parameter bifurcation diagrams of the generalized Hénon map (GHM), that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codim 2 bifurcations of fixed points of GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation o...

متن کامل

Structural Stability of Planar Bimodal Linear Systems

Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real) spira...

متن کامل

Transition to Blow-up in a Reaction-Diffusion Model with Localized Spike Solutions

For certain singularly perturbed two-component reaction-diffusion (RD) systems, the bifurcation diagram of steady-state spike solutions is characterized by a saddle-node behavior in terms of some parameter β in the system. For some such systems, such as the Gray-Scott model, a spike self-replication behavior is observed as a parameter varies across the saddle-node point. We demonstrate and anal...

متن کامل

Taming a Chaotic Dripping Faucet via a Global Bifurcation

We carried out a fluid dynamical simulation for a forced dripping faucet system using a new algorithm that was recently developed. The simulation shows that periodic external forcing induces transitions from chaotic to periodic motion and vice versa. We further constructed an improved mass-sprig model for the same system on the basis of data obtained from the fluid dynamical computations. A det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016